Studies on bicarbonate transporters and carbonic anhydrase in porcine nonpigmented ciliary epithelium.
نویسندگان
چکیده
PURPOSE Bicarbonate transport plays a role in aqueous humor (AH) secretion. The authors examined bicarbonate transport mechanisms and carbonic anhydrase (CA) in porcine nonpigmented ciliary epithelium (NPE). METHODS Cytoplasmic pH (pH(i)) was measured in cultured porcine NPE loaded with BCECF. Anion exchanger (AE), sodium bicarbonate cotransporter (NBC), and CA were examined by RT-PCR and immunolocalization. AH secretion was measured in the intact porcine eye using a fluorescein dilution technique. RESULTS Anion exchanger AE2, CAII, and CAIV were abundant in the NPE layer. In cultured NPE superfused with a CO(2)/HCO(3)(-)-free HEPES buffer, exposure to a CO(2)/HCO(3)(-)-containing buffer caused rapid acidification followed by a gradual increase in pH(i). Subsequent removal of CO(2)/HCO(3)(-) with HEPES buffer caused rapid alkalinization followed by a gradual decrease in pH(i). The rate of gradual alkalinization after the addition of HCO(3)(-)/CO(2) was inhibited by sodium-free conditions, DIDS, and the CA inhibitors acetazolamide and methazolamide but not by the Na-H exchange inhibitor dimethylamiloride or low-chloride buffer. The phase of gradual acidification after removal of HCO(3)(-)/CO(2) was inhibited by DIDS, acetazolamide, methazolamide, and low-chloride buffer. DIDS reduced baseline pH(i). In the intact eye, DIDS and acetazolamide reduced AH secretion by 25% and 44%, respectively. CONCLUSIONS The results suggest the NPE uses a Na(+)-HCO(3)(-) cotransporter to import bicarbonate and a Cl(-)/HCO(3)(-) exchanger to export bicarbonate. CA influences the rate of bicarbonate transport. AE2, CAII, and CAIV are enriched in the NPE layer of the ciliary body, and their coordinated function may contribute to AH secretion by effecting bicarbonate transport into the eye.
منابع مشابه
EC OPHTHALMOLOGY Mini Review Rediscovering Carbonic Anhydrase Inhibitors in Ophthalmology
Background: Topical carbonic anhydrase inhibitors (CAI) are the commonly used pharmacologic agents as an ocular hypotensive in medical therapy of glaucoma. This traditional use is due to reduced aqueous production through decreased bicarbonate formation in ciliary body epithelium. Taken into account current economical burden worldwide, the well-known drugs are “rediscovered’ and repurposed. In ...
متن کاملImmunocytochemical localization of carbonic anhydrase, NaK-ATPase and the bicarbonate chloride exchanger in the anterior segment of the human eye.
We examined immunohistochemically the localization of three transport enzymes (carbonic anhydrase, Ca-II; sodium-potassium-activated adenosine triphosphatase, NaK-ATPase; bicarbonate-chloride exchanger, band III) in the anterior segment of the human eye. In accord with earlier studies, NaK-ATPase was primarily found in the corneal endothelium, but also in the corneal basal epithelial cell membr...
متن کاملRole of anions in nitric oxide-induced short-circuit current increase in isolated porcine ciliary processes.
PURPOSE To investigate how nitric oxide (NO) modulates short-circuit current (Isc) in isolated porcine ciliary processes. METHODS Isc changes (Ussing-type chamber) induced either by the NO donors SNP or SIN-1, or by the cGMP analogue 8-pCPT-cGMP were assessed. The effect of inhibitors of guanylate cyclase (10 microM ODQ, 100 microM LY83583), protein kinase G (30 microM Rp-8-pCPT-cGMP, 3 micro...
متن کاملGas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملGas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach
In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 50 4 شماره
صفحات -
تاریخ انتشار 2009